Online Supplemental Materials

Supplemental figure legend

Figure S1. Characterization of TNF- α -promoted *Fancc-*/- pre-leukemic cells. (A) Morphological examination of colonies from the second series plating. (B) TNF- α promotes *Fancc-*/- progenitor proliferation. Lin-Sca-1+ BM cells cultured in liquid culture containing 10 ng/ml TNF- α were analyzed for serial replating efficiency of hematopoietic progenitors. Data represents the mean ± SD of three experiments. (*C*) Wright-Giemsa (40×) staining of BM cells in cultures at days 0, 10 and 28.

Figure S2. PCR genotyping of recipient tissue genomic DNA at the time of terminal leukemia in recipients of pre-leukemic *Fancc-/-* BM cells. Using the genotyping primers (see Methods) that could detect the WT and *Fancc-/-* alleles, we found that all organs examined contain donor-derived *Fancc-/-* cells.

Figure S3. TNF- α selects for uncorrected *Fancc-/-* cells. (A) Total number of viable cells was counted by the trypan blue exclusion method at the times indicated. (B) Proportions of transduced (GFP+) cells in vector (GFP only) and FANCC (FANCC plus GFP) cultures. Unsorted cells were cultured in the presence of TNF- α (10 ng/ml) for 30 days. (C) Representative fluorescent (GFP+; left) and phase-contrast (right) images of day 5 and day 30 cultures.

Figure S4. Nuclear localization of the NF-kB subunit p65 in the BM cells from recipient mice. 2×10^5 *Fancc-/-* pre-leukemic, and leukemic cells transduced with control or $l\kappa B\alpha AA$ retroviruses (along with competitive cells) were injected i.v. into lethally irradiated recipients, which after 10 days were injected i.p. with one dose (100 μg/kg) of TNF-α. 24 h later, recipient mice were sacrificed and BM cells were isolated for preparation of cytosol and nuclear extracts, followed by immunoblot analysis of the NF-κB subunit p65.

Supplemental table

Table S1. Primer sequences for RT-PCR

Gene	Primer sequence $(5' \rightarrow 3')$
TNFR	F, ATGTCCATTCTAAGAA
	R, ATCTCCACCTGGGACA
Caspase 3	F, ACCTCAGTGGATTCAA
	R, ATGAATGTCTCTGA
Caspase 8	F, AAGAACTGGGCAGTGA
	R, TCTAGGAAGTTGACCA
FADD	F, GCAACGATCTGATGGA
	R, AGGCGCTGCAGTAGAT
Fas	F, AGAGTTCATACTCAAG
	R, GCATTTATCAGCATAA
FasL	F, ATGCAGCAGCCCATGAA
	R, TTTAGAGGGGTCAGTG
RIP	F, ACCAGACATGTCCTTG
	R, CTCAGTCTGTGCATCA
TRADD	F, AGAATGGCCACGAGGA
	R, ACTGGACGATGAGCTG
TRAIL	F, TCAGCTTCAGTCAGCA
	R, AAGATCTCTCCATCAG
GAPDH	F, ACTGGCATGGCCTTCCG
	R, CAGGCGCACGTCAGATC

Supplemental figures

Figure S1

Α

В

Figure S1

С

Figure S2

Figure S3

Α

В

Figure S3

С

Figure S4

